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ABSTRACT

The empirical mass discrepancy–acceleration (MDA) relation of disk galaxies provides a key test
for models of galactic dynamics. In terms of modified laws of gravity and/or inertia, the MDA relation
quantifies the transition from Newtonian to modified dynamics at low centripetal accelerations ac ∼<

10−10 ms−2. As yet, neither dynamical models based on dark matter nor proposed modifications of the
laws of gravity/inertia have predicted the functional form of the MDA relation. In this work, I revisit
the MDA data and compare them to four different theoretical scaling laws. Three of these scaling laws
are entirely empirical; the fourth one – the “simple µ” function of Modified Newtonian Dynamics –
derives from a toy model of gravity based on massive gravitons (the “graviton picture”). All theoretical
MDA relations comprise one free parameter of the dimension of an acceleration, Milgrom’s constant aM.
I find that the “simple µ” function provides a good fit to the data free of notable systematic residuals
and provides the best fit among the four scaling laws tested. The best-fit value of Milgrom’s constant
is aM = (1.06 ± 0.05) × 10−10 ms−2. Given the successful prediction of the functional form of the
MDA relation, plus an overall agreement with the observed kinematics of stellar systems spanning eight
orders of magnitude in size and 14 orders of magnitude in mass, I conclude that the “graviton picture”
is sufficient (albeit probably not a necessary nor unique approach) to describe galactic dynamics on all
scales well beyond the scale of the solar system. This suggests that, at least on galactic scales, gravity
behaves as if it was mediated by massive particles.
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1. INTRODUCTION

Since the seminal works by Zwicky (1933), Gallagher &
Hudson (1976), and Rubin et al. (1980) it has become
evident (e.g., Binney & Tremaine 1987; Sanders 1990)
that the dynamical masses of galaxies and galaxy clus-
ters exceed their luminous masses by up to one order
of magnitude – the well-known missing mass problem.
On the one hand, this observation led to the postulate
of non-luminous and non-baryonic dark matter (Os-
triker & Peebles 1973; Einasto et al. 1974), eventually
evolving into the ΛCDM standard model of cosmology
(e.g., Bahcall et al. 1999). On the other hand, vari-
ous proposals for modified laws of gravity and/or iner-
tia have been made to address the missing mass prob-
lem; the most successful candidate to date appears to
be Modified Newtonian Dynamics (MOND; Milgrom
1983a,b,c; Bekenstein & Milgrom 1984; also Beken-
stein 2006; Ferreira & Starkman 2009). As yet, MOND
provides the best description of galactic dynamics (see
Famaey & McGaugh 2012 for a recent review; cf., also
Kroupa 2012). MOND postulates a modification of the
laws of gravity and/or inertia such that the expres-
sion for the circular speed vc of a test mass orbiting
a luminous mass M0 transits from the usual Newto-
nian form vc

2 = GM0/r to vc
4 = GM0 aM = const.

when approaching very low centripetal accelerations
ac ≪ 10−10 ms−2; here r is the radial distance from
M0, G is Newton’s constant and aM ≈ 10−10 ms−2 is
Milgrom’s constant.

Even though MOND provides the correct limiting
cases by construction, it does not provide the func-
tional form of the transition from Newtonian to mod-
ified dynamics. Nevertheless, this transitional regime
has been explored observationally, leading to the dis-
covery of the empirical mass discrepancy–acceleration
(MDA) relation of disk galaxies (McGaugh 2004). The
MDA relation comprises a universal scaling of the ratio
Mtot/M0 – with Mtot and M0 being the dynamical and
baryonic masses respectively – with centripetal acceler-
ation ac. Substantial deviations of Mtot/M0 from unity
occur at ac ∼< 10−10 ms−2. As yet, neither dynami-
cal models based on dark matter nor proposed laws of
modified gravity/inertia have predicted the functional
form of the MDA relation. Even though the functional
form of the MDA relation is not provided by theory, it
is constrained by several boundary conditions. First,
any theoretical relation must comprise (a) Newtonian
dynamics at high accelerations and (b) MONDian dy-
namics at low accelerations. Second, the theoretical
MDA relation has to connect the two limiting cases
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unambiguously and smoothly.

In this paper, I revisit the empirical MDA relation
and compare it to four different theoretical scaling laws
known from the description of galactic rotation curves.
One of these scaling laws can be derived from a toy
model of gravity, the “graviton picture”, based on mas-
sive gravitons; the other three are entirely empirical.
Based on a comparison of fit residuals, I argue that the
scaling law derived from the “graviton picture” pro-
vides the best fit to the data. This suggests that, at
least on galactic scales, gravity behaves as if it was me-
diated by massive particles.

2. ANALYSIS

2.1 Observational MDA Data

I make use of the MDA data set of Sanders & Mc-
Gaugh (2002), McGaugh (2004), and Famaey & Mc-
Gaugh (2012) as summarized in Fig. 10 of Famaey
& McGaugh (2012).∗ For each galaxy, total baryonic
mass (stars and gas) and circular velocity are derived
as function of radial distance from the galactic center,
r. Velocities are determined from optical and/or radio
line spectroscopy of hydrogen, baryonic masses from
optical/near-infrared photometry and H i 21-cm radio
line mapping.

For a given radial distance r, the mass discrepancy
is derived from comparison of observed circular speed,
vc, with the speed expected from the enclosed baryonic
mass, v0 =

√

GM0/r; G is Newton’s constant. The
mass discrepancy (MD) is then given by

Mtot

M0

=

(

vc

v0

)2

. (1)

This ratio can be analyzed either as a function of the
centripetal acceleration ac = vc

2/r (“representation 1”,
“R1”) or as a function of the Newtonian acceleration
expected for the case Mtot = M0, i.e., gN = v0

2/r
(“representation 2”, “R2”). Empirically, the MD is
found to anti-correlate with ac and gN but to not cor-
relate with distance r or orbital frequency (McGaugh
2004). The empirical MDA relation is illustrated in
Fig. 10 of Famaey & McGaugh (2012) which comprises
735 measurements from a sample of 60 galaxies. For all
data points, the relative statistical precisions are better
than 5% for vc and thus better than 7% for Mtot ∝ vc

2.

2.2 Theoretical MDA Relation

According to the discussion provided in Trippe (2013a,b),
it is possible to derive a theoretical MDA relation from
a toy model of gravity. This model, the “graviton pic-
ture”, assumes ad hoc that (1) gravitation is medi-
ated by discrete particles, gravitons ; (2) these gravi-

∗Made publicly available by Stacy S. McGaugh via
http://astroweb.case.edu/ssm/data/MDaccRgn LR.dat .

tons are virtual particles arising from quantum fluctu-
ations, meaning they do not remove energy from the
emitting mass; (3) gravitons have a non-zero mass;
and (4) graviton–graviton interactions are excluded.
The “graviton picture” is an unusual but – a priori –
straightforward extrapolation of the standard assump-
tions made in quantum field theories (cf., e.g., Griffith
2008 for an overview; see also Goldhaber & Nieto 2010;
Hinterbichler 2012 for reviews on massive gravitons).
From assumptions 1–4 it follows that a baryonic source
mass M0 radiates away massive gravitons, thus forming
a (electromagnetically dark) graviton halo with mass
density profile

ρ(R) = M0 β R−2 (2)

where R denotes the radial distance from M0 and β
is a scaling parameter of the dimension of an inverse
length. The proportionality ρ ∝ M0 follows from con-
sistency with classical field theory; the proportionality
ρ ∝ R−2 follows from the inverse-square-of-distance
law of radiation. Assuming a test particle orbiting M0

on a circular orbit with radius r and circular speed vc,
one can re-write β like

β =
2a0

vc
2

(3)

with vc
2/2 being the kinetic energy per unit mass of the

test particle and a0 denoting a constant of the dimen-
sion of an acceleration. When integrating ρ(R) over R
from 0 to r in spherical coordinates and adding M0,
one finds the theoretical MDA relation

Mtot

M0

= 1 +
aM

ac

≡ ξ1(x) = 1 +
1

x
(4)

with aM = 8πa0 being Milgrom’s constant and x =
ac/aM (Trippe 2013a,b). Milgrom’s constant is the
only free parameter of the model; Mtot/M0 remains
very close to unity as long as ac ≫ aM. Notably, the
empirical MDA relation implies that aM is a universal
constant of nature which is identical for all galactic sys-
tems (cf., Famaey & McGaugh 2012). The Newtonian
acceleration gN is given by gN = ac/(Mtot/M0) by con-
struction. Expressing the theoretical MD as function
of either ac (as in Eq. 4) or gN leads to the empirical
“simple µ” and “simple ν” functions commonly em-
ployed in MOND, respectively (Famaey & McGaugh
2012; Trippe 2013b).

2.3 Alternative MDA Scaling Laws

In addition to ξ1(x), several other scaling laws can be,
and have been, applied to galactic rotation curves (e.g.,
Milgrom 1983b; Famaey & Binney 2005; Famaey & Mc-
Gaugh 2012). As noted by, e.g., Famaey & McGaugh
(2012), the boundary conditions discussed in Section 1
are fulfilled by the family of functions
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ξn(x) =

[

1 +

(

1

x

)n]1/n

, n = 1, 2, 3, ... , (5)

with x = ac/aM as before. The cases n = 1, 2 have
been used to successfully model galactic rotation curves
(e.g., Famaey & Binney 2005). As already noted by
Milgrom (1983b), an additional valid MDA scaling law
is given by

ξe(x) =
1

1 − e−x
, e = 2.718... . (6)

In the following discussion, I consider the scaling
laws ξ1(x), ξ2(x), ξ3(x), and ξe(x). Else than ξ1(x),
which I discuss in Section 2.2, the other three scaling
laws are entirely empirical and do not derive from phys-
ical models; technically, it is possible to construct arbi-
trary additional scaling laws from the known boundary
conditions.

2.4 Model vs. Data

Having the empirical as well as a theoretical MDA rela-
tion at hand, comparison between data and model is, a
priori, straightforward. However, one encounters some
complications affecting the observational MDA data:
Firstly, any empirical value for Mtot/M0 depends on
the choice of a mass-to-light ratio made for a specific
galaxy. This choice is inevitably affected by a system-
atic uncertainty which introduces a systematic scatter
into the empirical MDA relation that partially domi-
nates over the formal statistical errors. Secondly, data
at high accelerations gN ∼> 10−10 ms−2 are obtained
from high surface brightness galaxies at low radii where
the velocities gradients dvc/dr are steep and accurate
measurements of vc are difficult. Thirdly, the empirical
MDA relation assumes circular motion which is a good
though non-perfect approximation (McGaugh 2004).
Careful inspection of the data (cf., Fig. 10 of Famaey &
McGaugh 2012) shows that the high-acceleration tails
of the MDA distributions drop slightly below unity –
indicating a bias in the data which one needs to take
into account. Eventually, I probe the agreement of data
and model according to the following scheme:

1. Make a first guess for aM such that the model
curves follow the data approximately.

2. Add a constant offset δ to Mtot/M0 such that (a)
the trend lines of the empirical distributions are
placed above unity for all accelerations and (b)
empirical distributions and theoretical curves con-
nect smoothly at high accelerations ac ≈ gN ∼>

3 × 10−10 ms−2. As ac ∝ Mtot and gN ∝ M0,
actual centripetal acceleration ac and measured
acceleration a′

c are related like a′
c = ac − δ × gN.

3. Optimize the choice for aM such that the root-
mean-squared (r.m.s.) residual difference between
model and data, η, is minimized in R2.

Steps 1 and 2 are applied to R1 and R2 simultane-
ously, step 3 is applied to R2 only because the scatter
is lower in R2 than in R1.

3. RESULTS

I illustrate the analysis of ξ1(x) in Fig. 1, showing both
representations R1 and R2. A comparison of all four
scaling laws is provided in Fig. 2, using R2 only for
clarity. For each scaling law, I present a comparison of
best-fit model and data (left column of Fig. 2) as well
as the corresponding residual (right column of Fig. 2); I
adopt the convention “residual = data − model”. Each
diagram provides the parameters aM, δ, and η of the
corresponding best-fit model.

All scaling laws can be used to fit the data with more
or less acceptable results. The post-fit r.m.s. residuals
are

η = 0.286 for ξ1(x),

η = 0.279 for ξ2(x),

η = 0.297 for ξ3(x),

η = 0.278 for ξe(x),

in units of Mtot/M0, meaning that the formal difference
between the four models is quite moderate, with r.m.s.
residuals differing by about 8% in the most extreme
case. The values found for Milgrom’s constant are

aM = 1.06 × 10−10 ms−2 for ξ1(x),

aM = 1.26 × 10−10 ms−2 for ξ2(x),

aM = 1.30 × 10−10 ms−2 for ξ3(x),

aM = 1.15 × 10−10 ms−2 for ξe(x),

with offsets

δ = 0.225 for ξ1(x),

δ = 0.075 for ξ2(x), ξ3(x), and ξe(x),

in units of Mtot/M0.

As pointed out in Section 2.4, the observational data
are affected by systematic uncertainties that trans-
late into (largely) systematic uncertainties in charac-
teristic acceleration aM and offset δ; from the fitting
procedure, I estimate these uncertainties to be about
0.05 × 10−10 ms−2 and 0.05, respectively, for all scal-
ing laws. I note that the bias affecting the data might
be more complex than a simple offset δ. However, I
intentionally refrain from applying any more complex
correction function because this comes with the risk of
“fitting the data to the model” – which is obviously
unacceptable.

Even though the formal r.m.s. fit residuals do
not point toward or reject a certain scaling law in a
straightforward manner, the systematic residuals illus-
trated in the right column of Fig. 2 do. Inspection
of these residuals shows that ξ3(x) does not provide
an acceptable fit to the data and has to be rejected.
The scaling laws ξ2(x) and ξe(x) provide better fits
but show systematic deviations from the data at high
accelerations gN ∼> 10−10 ms−2, with ξe(x) performing

better than ξ2(x); in both cases, the model curves drop
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Fig. 1.— Comparison of theoretical and empirical MDA relations. Here Mtot is the total dynamical mass, M0 is the
luminous baryonic mass. The mass discrepancy is given by the ratio Mtot/M0. Top panel : Mass discrepancy vs. measured
centripetal acceleration a′

c. Bottom panel: Mass discrepancy vs. Newtonian acceleration gN, i.e., the acceleration expected
if Mtot = M0. Grey squares indicate the bias-corrected (δ = 0.225) MDA data by Famaey & McGaugh (2012), the
continuous black curve corresponds to ξ1(x) (Eq. 4) for a characteristic acceleration aM = 1.06 × 10−10 m s−2. Please note
the logarithmic–linear axis scales. Data and model are in good agreement, the r.m.s. residuals are η = 0.53 and η = 0.29
(in units of Mtot/M0), respectively.

toward zero too fast. Only the scaling law ξ1(x) ap-
pears to be free of notable systematic deviations from
the data. Interestingly, even though it provides the
best fit, the r.m.s. residual of ξ1(x) is about 4% larger
than the one for ξe(x); this is caused by ξe(x) provid-
ing a slightly better fit to the data at low accelerations
gN ∼< 5 × 10−12 ms−2 where the scatter is large.

From the analysis, I eventually conclude that ξ1(x)
provides a satisfactory description of the empirical
MDA relation (see also Fig. 1). It is free of notable
systematic deviations from the data and provides the
best fit – though by a narrow margin – of all four scaling
laws tested. The value I find for Milgrom’s constant,
aM = (1.06 ± 0.05) × 10−10 ms−2, is in good agree-
ment with independent estimates (e.g., Famaey & Bin-
ney 2005; Famaey & McGaugh 2012). Accordingly, my
analysis is able to constrain Milgrom’s constant aM to

within about 5%.†

4. DISCUSSION

The missing mass problem is commonly approached by
postulating non-baryonic dark matter within the frame
of ΛCDM cosmology. In recent years, it has become
clear that this approach is incomplete. The assumption
of dark matter distributed within and around galaxies
is partially incompatible with observations of structure
and kinematics of galaxies and groups of galaxies (see
Kroupa 2012 for a recent review). Standard cosmology
seems unable to predict fundamental relations of galac-
tic dynamics like the Faber-Jackson and Tully-Fisher

†Coincidentally, aM = c H0/2π within errors, with c denoting the
speed of light and H0 ≈ 70 km s−1 Mpc−1 being Hubble’s con-
stant (e.g., Riess et al. 2011; Lee & Jang 2012). An approximate
equality of aM and c H0 was already noted by Milgrom (1983a).
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Fig. 2.— Comparison of the theoretical MDA relations ξ1(x), ξ2(x), ξ3(x), and ξe(x) (from top to bottom). The left
column shows the best fits to the data, each diagram comprises the best-fit values of aM, δ, and η. Grey points mark the
MDA data (MD as function of gN), black continuous curves indicate the best-fit models. The diagrams in the right column
show the corresponding residuals, i.e., the differences between data and best-fit models (in units of Mtot/M0). Please note
the logarithmic–linear axis scales.

relations (Faber & Jackson 1976; Tully & Fisher 1977).
More generally, it has been found that galactic dynam-
ics is intimately linked with a universal characteristic
acceleration, Milgrom’s constant aM, which shows up in
the baryonic Tully-Fisher relation, the surface density–
acceleration relation of galaxies, and the MDA relation
(Famaey & McGaugh 2012). This can be understood
in the frame of theories of modified gravity and/or in-
ertia based on acceleration scales (e.g., Milgrom 1983a;
Sanders & McGaugh 2002; Ferreira & Starkman 2009).

The scaling law ξ1(x), which can be derived from
the “graviton picture” proposed in Trippe (2013a),
predicts a scaling of total dynamical mass Mtot with
centripetal acceleration ac according to Eq. 4. Using
vc

2 = GMtot/r and ac = vc
2/r leads to

vc
4 = GM0 aM = const. (7)

in the limit ac ≪ aM as required by consistency with
MOND; in the inverse case ac ≫ aM, the expres-
sion for the circular speed reduces to the usual Kep-
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lerian form. By construction, Eq. 7 is valid for rota-
tionally supported (dynamically cold) stellar systems.
For pressure-supported (dynamically hot) systems, one
finds (Milgrom 1984, 1994), again for ac ≪ aM,

σ4 =
4

9
GM0 aM (8)

with σ being the three-dimensional stellar velocity dis-
persion (for isotropic velocity distributions and no rota-
tion, σ2 = 3σ2

z , with σz being the line-of-sight velocity
dispersion). Given the motivation of this paper, it is
important to note that Eq. 8 does not depend on the
functional form of the MDA relation but only on the
limit expressed in Eq. 7.

Eqs. 7 and 8 provide for the observed asymp-
totic flattening of galactic rotation curves and the
Tully-Fisher/Faber-Jackson relations. When defining
a luminous surface density Σ ∝ M0/r2 one finds
ac ∝ Σ1/2, in agreement with the empirical sur-
face density–acceleration relation. However, the cor-
rect predictions of flat rotation curves, of the Tully-
Fisher/Faber-Jackson relations, and of the surface
density–acceleration relation do not depend on the
functional form of the MDA relation but only on its
asymptotic behavior in the limit of low accelerations
ac ≪ aM. The new, and apparently unique, achieve-
ment of the “graviton picture” is a successful prediction
of the functional form of the MDA relation and thus the
transitional regime from Newtonian to modified dynam-
ics.

So far, I analyzed the scaling law ξ1(x) with respect
to the dynamics of disk galaxies; it is worth exploring
for which dynamical systems and which ranges in mass
and size it holds.

Galaxy clusters: Being the first dynamical systems
for which a missing mass problem was noted (Zwicky
1933), clusters of galaxies have proven to be a challenge
for dynamical studies ever since. Taking into account
that most of the mass is not stored in stars but in the
intra-cluster medium, observations find (Mtot/M0) ≈ 8
(Giodini et al. 2009). The temperature T of the intra-
cluster medium is known to follow a relation T 2 ∝ σ4 ∝

M0 as predicted by Eq. 8, i.e., a “Faber–Jackson rela-
tion for galaxy clusters” (Sanders 1994). The theoreti-
cal MD values still underestimate the observed ones by
factors on the order of two (cf., Section 6.6.4 of Famaey
& McGaugh 2012). Given that present-day observa-
tions probably miss substantial amounts of intergalac-
tic matter (Fukugita & Peebles 2004; Shull, Smith &
Danforth 2012), meaning M0 is underestimated sys-
tematically, this discrepancy is unsurprising however.

Galaxies: As discussed in Section 3, ξ1(x) provides
a good description of galactic dynamics over two or-
ders of magnitude in ac and three orders of magnitude
in gN. This corresponds to a correct reproduction of
rotation curves of disk galaxies on galactic radii be-
tween ≈1 kpc and ≈80kpc (Sanders & McGaugh 2002;
Fig. 23 of Famaey & McGaugh 2012; see also Famaey

& Binney 2005 for the specific case of the Milky Way).
Eqs. 7 and 8 hold for at least seven orders of magnitude
in mass, from dwarf galaxies to massive spirals (cf.,
Fig. 48 of Famaey & McGaugh 2012; see also Sanders
2010 for the specific case of elliptical galaxies); includ-
ing galaxy clusters, the range extends over ten orders
of magnitude.

Center of the Milky Way: The Galactic center hosts
a nuclear star cluster which includes the supermassive
(M• ≈ 4.3 × 106 M⊙; Gillessen et al. 2009) black hole
Sagittarius A* (Sgr A*). The sphere of influence of
Sgr A* contains a total dynamical mass Mtot ≈ 9 ×

106 M⊙ within a radius r ≈ 2 pc (Trippe et al. 2008;
Schödel, Merritt & Eckart 2009). This implies that for
the nuclear star cluster (Mtot/M0) ≈ 1 + 3× 10−4; the
deviation from unity predicted by ξ1(x) is about three
orders of magnitude below the sensitivity of current
dynamical studies (e.g., Trippe et al. 2008). For the
other three scaling laws, the deviations from unity are
yet smaller by several orders of magnitude.

Globular clusters: Located in the outer Galactic
halo, several isolated globular star clusters have re-
ceived attention recently as test benches for theories
of gravity. Various studies (e.g., Scarpa et al. 2011;
Hernandez et al. 2013) find that the stellar velocity
dispersions of globular clusters approach constant val-

ues σ ∝ M0
1/4 asymptotically at large radii (and thus

low accelerations), in agreement with Eq. 8 and in dis-
agreement with standard Newtonian dynamics. More
detailed comparisons between theoretical and observed
cluster masses and velocity dispersions have been in-
conclusive as yet (cf., e.g., Frank et al. 2012 for a re-
cent study of the cluster Palomar 4): as pointed out
by Sanders (2012), the theoretically expected cluster
kinematics strongly depends on the initial assumptions
made for the phase-space distribution of the cluster
stars, especially if the cluster is approximated as an
isothermal sphere or not.

Binary stars: For stellar masses M⋆ ≡ M0 ≈ 1 M⊙,
the centripetal acceleration experienced by a test par-
ticle orbiting the star at radial distance r reaches the
regime ac ∼

< aM for r
∼
> 7000AU. Accordingly, wide

binary star systems can be used to probe the valid-
ity of Eq. 7. Based on a sample of 417 wide binaries,
Hernandez et al. (2012) find that the circular velocities
of the companion stars are independent of their sepa-
rations, in agreement with Eq. 7 and in disagreement
with Kepler’s third law.

Solar system: The solar system arguably provides
the strongest constraints on any theory of gravity.
All MDA scaling laws discussed in this work imply
an increase of the effective mass of the sun experi-
enced by the solar planets. The observational limits
on (Mtot/M0)− 1 experienced by Jupiter, Uranus, and
Neptune, in units of 10−7, are 2, 18, and 35, respec-
tively (3σ confidence levels; Anderson et al. 1995). The
values predicted by the scaling laws ξ2(x), ξ3(x), and
ξe(x) are lower than the observational limits by many
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orders of magnitude (using orbital data from Tholen,
Tejfel & Cox 2000). However, the values predicted by
ξ1(x) are 5, 65, and 159, respectively – exceeding the
observational limits by factors of three to five.

Regarding the combined evidence, I can draw sev-
eral conclusions. Firstly, none of the scaling laws I ex-
amine is truly universal in the sense of being valid on
all scales, from the solar system to clusters of galax-
ies. Secondly, the scaling law ξ1(x) provides the best fit
to the empirical MDA relation; including the limiting
cases expressed in Eqs. 7 and 8, it provides a good and
simple description of galactic dynamics on all scales.
Thirdly, the apparent inconsistency of ξ1(x) with solar
system kinematics – i.e., for a small dynamical system
with ac ≫ aM – clearly indicates that ξ1(x) is only an
approximation of a more sophisticated scaling law.

The interesting feature of ξ1(x) is that it is physically
motivated; it can be derived from a “graviton picture”
of gravity. Even though the idea of gravity being me-
diated by massive particles – “massive gravity” – has
not been applied to galactic dynamics yet, it is far from
new. As already noted by Fierz & Pauli (1939), gravi-
tation can be described as being mediated by a virtual
particle with spin 2, a graviton, with a mass mg ≥ 0.
Since then, massive gravity has been an area of active
research theoretically as well as experimentally (see,
e.g., Goldhaber & Nieto 2010; Hinterbichler 2012 for
reviews). Multiple experiments have been able to con-
strain the graviton mass to mg < 10−65 kg ≈ 10−29 eV
(lowest model-independent limit; Goldhaber & Nieto
2010). The possibility of non-zero graviton masses has
found application in cosmology in view of the dark
energy problem: Heisenberg’s uncertainty relation de-
mands that virtual particles with non-zero mass have
limited life times. Accordingly, mg > 0 implies an ex-
ponential decay of gravity on cosmological scales, cor-
responding to an apparent accelerated expansion of the
universe (e.g., Hinterbichler 2012). Recently, Cardone,
Radicella & Parisi (2012) reported that massive gravity
is indeed consistent with cosmological observations.

From the discussion above it follows that the as-
sumption of massive gravity is, a priori, a possibility
to be considered in the context of galactic dynamics.
Indeed, the “graviton picture” is sufficient to describe
stellar dynamics on all scales – however, this does not
imply that it is necessary or is a unique approach to
the MDA relation. Evidently, the simple toy model I
use in Section 2.2, which is essentially based on classi-
cal mechanics, can only be a first-order approximation
to a more sophisticated, relativistic theory of gravity.
Indeed, relativistic formulations of MONDian gravita-
tion, notably Bekenstein’s tensor–vector–scalar theory
(TeVeS), have been known for almost a decade – how-
ever with the remarkable limitation of not providing
the MDA relation a priori but assuming various scaling
laws ad hoc (Bekenstein 2004, 2006). Eventually, I end
up with the following careful conclusion: On galactic
scales, gravity behaves as if it was mediated by massive
particles – gravitons.

5. CONCLUSIONS

I compare the empirical mass discrepancy–acceleration
relation of disk galaxies first reported by McGaugh
(2004) with four theoretical scaling laws. One of these
scaling laws, ξ1(x), can be derived from a “graviton pic-
ture” of gravity (Trippe 2013a,b), the other three are
empirically motivated. I arrive at the following princi-
pal conclusions:

1. The scaling law ξ1(x) provides the best fit to
the MDA data. It comprises one free parame-
ter, Milgrom’s constant, which I find to be aM =
1.06 × 10−10 ms−2 within a (largely systematic)
relative uncertainty of 5%.

2. In addition to the successful prediction of the
MDA relation, the “graviton picture” is consistent
with stellar dynamics on all scales, from Galactic
binary stars to clusters of galaxies, thus covering
stellar systems spanning eight orders of magnitude
in size and 14 orders of magnitude in mass.

3. The scaling law ξ1(x) is probably inconsistent
with solar system kinematics, indicating that it
is only an approximation of a more sophisticated
law of gravity.

Regarding the combined evidence, the “graviton pic-
ture” provides a good and simple description of galactic
dynamics on all scales despite its toy-model character.
This suggests that, on galactic scales, gravity behaves
as if it was mediated by massive particles – gravitons.
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