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ABSTRACT

We present a mathematical model that predicts the variation of illuminance during a solar eclipse,
considering continuous effects of limb darkening. We assume that (1) the Sun and the Moon consti-
tute perfect spheres, (2) the Moon crosses the Sun with a constant apparent velocity, and (3) sunspots,
prominences, and coronae can be neglected. We compare predictions of this model with actual measure-
ments made by Möllmann & Vollmer (2006) during a total solar eclipse in Turkey, and with predictions
of existing models. The new model is shown to describe the actual phenomenon more accurately than
existing models.
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1. INTRODUCTION

A solar eclipse is one of the most notable phenomena
exhibited in the sky. Since ancient times, the Sun hid-
den by the Moon has captured people’s attention, and
thus, analysis of various results of a solar eclipse is the
topic of high interest. Many studies have been made to
predict and measure the variations of solar properties
such as air and surface temperatures, or the color of
the Sun (see Gedzelman 1975 or Littmann et al. 2008).
Among these we focus on illuminance, about which sur-
prisingly few works have been made, as mentioned in
Möllmann & Vollmer (2006).

Solar illuminance, defined by the solar radiation en-
ergy received by a unit area of terrestrial surface, in-
dicates how bright the Sun is in presence of no other
significant light sources. The illuminance is propor-
tional to the surface integral of the light intensity of
the light source. Although many other definitions are
possible, we refer here to light intensity as the radiation
energy originating from a unit solid angle of the light
source. The central part of the Sun exhibits a higher
light intensity than its outer part, and this phenomenon
is referred to limb darkening.

Möllmann & Vollmer (2006) constructed a model to
predict the illuminance during a solar eclipse. In their
model, it was assumed that the Sun exhibits a uni-
form light intensity throughout its surface, and there-
fore the illuminance during a solar eclipse was assumed
to be proportional to the visible, i.e., not covered by
the Moon, area of the Sun. They also made a series of
measurements of the illuminance during a total eclipse
in Southern Turkey, and compared the model with the
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measurements to confirm the validity of the model.

A few years later, Vollmer (2009) improved this
model by taking into account the effect of limb dark-
ening in a discrete way. That is, he assigned different
light intensity values to two distinct parts of the Sun,
i.e., the area closer to the center than 0.6 times of the
solar radius, and the area farther than the limit.

Although the two models perform well in fitting
the actual measurement of illuminance presented by
Möllmann & Vollmer (2006), they failed to describe
the continuous effects of limb darkening. In this work,
after making some assumptions, we analyze quantita-
tively the effects of limb darkening in Section 2, while in
Section 3 we construct a new model which includes the
desired improvements. In Section 4, we compare sta-
tistically our model and those of Möllmann & Vollmer
(2006) and Vollmer (2009) with the actual measure-
ment of illuminance presented by Möllmann & Vollmer
(2006), in order to determine their accuracy in predict-
ing the illuminance during a solar eclipse.

2. PRELIMINARIES

2.1 Assumptions

To simplify the modeling process while preserving
its accuracy, following assumptions were made in prior
to constructing a model for solar eclipse.

- The Sun and the Moon are perfect spheres.

- The apparent motion of two bodies can be consid-
ered as a motion of two disks with a constant relative
velocity.

- The angular radii of two bodies remain constant
during the eclipse.

- Effects of Sunspots, prominences, and coronae are
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Fig. 1.— A diagram of the Sun, seen from a distant point.

neglected.

- An annular eclipse, i.e., the complete inclusion of
the Moon in the Sun is not considered.

2.2 Limb Darkening

The light intensity of the Sun is highest at its center,
and decreases with increasing distance from the center.
This phenomenon is known as limb darkening. The
light intensity at a point on the source S observed from
a distant point P , as illustrated in Fig. 1., is related to
cosψ as follows, (see Cox 2001)

I(ψ)

I(0)
= a0 + a1 cosψ + a2 cos2 ψ, (1)

where I(0) is the central light intensity and the coef-
ficients ak’s satisfy a0 + a1 + a2 = 1. In case of the
solar radiation at wavelength 5500Å, the coefficients
are given by

a0 = 0.3, a1 = 0.93, a2 = −0.23. (2)

We use these formulae when constructing our model in
the following section.

If P is a terrestrial point, the distance from P to
the Sun is large enough compared to the solar radius
Rs to approximate ψ by the angle SOsP , or 6 SOsP .
The apparent distance of S from the solar center, r,
is then given by r = Rs sin 6 SOsP , and thus the light
intensity I(r) at a point with an apparent distance from
the solar center r, is generally expressed as,
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Fig. 2.— Geometry for the case of the solar center covered
by the Moon.

I(r)

I(0)
= 0.3 + 0.93 cosψ − 0.23 cos2 ψ

= 0.07 + 0.93

√

1 −

(

r

Rs

)2

+ 0.23

(

r

Rs

)2

. (3)

We recall that solar illuminance is proportional to
the surface integral of the light intensity of the light
source. Using radial symmetry, the entire illuminance
of the Sun is given by

Lmax =

∫ Rs

0

I(r)2πrdr = 0.805πI(0)R2

s = 0.805L0,

(4)
where L0 = I(0)πR2

s indicates the illuminance assum-
ing the central light intensity to be constant over the
solar surface. This implies that limb darkening has a
significant effect on the solar illuminance.

3. A MODEL FOR THE SOLAR ILLUMI-
NANCE

In this section we evaluate the solar illuminance
when the Moon covers the Sun, either partially or com-
pletely. We use s, the distance between centers of two
celestial objects, as a parameter.

3.1 Solar Center Covered

First, we consider the case in which the Moon covers
the solar center but does not cover the Sun completely
(see the geometry in Fig. 2). For this condition, we
require Rm − Rs < s ≤ Rm when Rm > Rs, and
0 < s ≤ Rm when Rm ≤ Rs.
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Fig. 3.— Geometry for the case of the solar center not
covered by the Moon.

Applying the law of cosines on triangle OsOmA
yields

cosΩ =
s2 + r2 −R2

m

2sr
, (5)

and thus

θ = 2π − 2Ω = 2π − 2 arccos
s2 + r2 −R2

m

2sr
. (6)

In order to obtain the global illuminance, we inte-
grate the illuminance over infinitesimally thin arcs AB
of radius r and central angle θ:

L(s) =

∫ Rs

Rm−s

I(r)rθdr. (7)

Substitution of (3) and (6) into (7) gives the solar
illuminance in terms of the central intensity I(0).

3.2 Solar Center Uncovered

Next, we consider the case when the Moon covers the
Sun only partially, so that it does not cover the solar
center, i.e., Rm < s ≤ Rm + Rs. As can be seen from
Fig. 3., (5) still holds, and so does (6). However, the
illuminance formula (7) requires some modifications.

For arcs with radius smaller than s − Rm, the cen-
tral angle equals 2π, not θ. Therefore in this case, (7)
becomes

L(s) =

∫ s−Rm

0

I(r)2πrdr +

∫ Rs

s−Rm

I(r)rθdr. (8)

Again, substitution of (3) and (6) into (8) gives the
solar illuminance in terms of the central intensity I(0).

3.3 Illuminance Expressed with the Parameter
s and t

It can be taken for granted that when 0 ≤ s < Rm−
Rs, which is only possible if Rm > Rs, the Moon covers
the Sun completely to block any illuminance. In this
case, one gets

L(s) = 0. (9)
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Fig. 4.— Movement of the Moon over the Sun.

To summarize, the illuminance L(s) can be ex-
pressed with the parameter s as follows.







(7) max(0, Rm −Rs) < s ≤ Rm

(8) Rm < s ≤ Rm +Rs

(9) 0 ≤ s ≤ max(0, Rm −Rs)

(10)

Now, we investigate how the parameter s is related
to the time t, so that the illuminance becomes a func-
tion of time. The solar eclipse can be divided into three
time intervals; during the first one, the Moon starts
to cover the Sun; during the second one, the Sun is
completely hidden behind the Moon; and finally during
the third one, the Moon gradually uncovers the Sun.
The second interval, or the total eclipse, occurs when
0 ≤ s ≤ max(0, Rm − Rs). The others, or the partial
eclipse, occurs when max(0, Rm −Rs) < s ≤ Rm +Rs.
Whether the total eclipse occurs or not depends on the
solar and Lunar radii, and the path of the Moon.

Let 2T indicate the total duration of an eclipse, and
t the time since the beginning of the eclipse. By def-
inition, s = Rm + Rs at t = 0 and at t = 2T . If
H is the closest point on the path of the Lunar cen-
ter to the solar center, at time t = 0, OmH(0) =
√

(Rm +Rs)2 − a2 (see Fig. 4). Since the Lunar cen-

ter must move a distance of 2
√

(Rm +Rs)2 − a2 dur-
ing the time 2T with constant velocity, OmH(t) is a
function of time as follows:

OmH(t) =| 1 −
t

T
|
√

(Rm +Rs)2 − a2. (11)

This implies that s, as a function of time, is given by:

s(t) =
√

a2 +OmH2

=

√

(1 −
t

T
)2(Rm +Rs)2 + (

2t

T
−
t2

T 2
)a2. (12)
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Fig. 5.— R
2 values as a function of Lmax.

Substitution of (3), (6) and (12) into (10) finally
yields the solar illuminance as a function of time. The
exact evaluation of this relation requires some numer-
ical integrations, which we perform using the Mathe-
matica software.

4. COMPARISON

In this section, we compare the illuminance pre-
dicted by the new model in Section 3 with an ac-
tual measurement, and with other models presented
by Möllmann & Vollmer (2006) and Vollmer (2009).
The solar illuminance was measured by Möllmann and
Vollmer (2006) in March 29th, 2006, during a total so-
lar eclipse in southern Turkey. Note that there were
no eruptive phenomena or significant features on the
apparent solar disk over the illuminance measurement
period, except for two small active regions on the east
limb (see http://www.solarmonitor.org/).

The instrumental absolute accuracy (2.5%) and var-
ious errors, including the inclination and read-out er-
rors, are not as big as few percents (see Möllmann
& Vollmer 2006 for details of the eclipse observation).
The measured data are displayed in Table 1. The time
indication refers to the time in seconds since the begin-
ning of the eclipse, and the illuminance indicates the
solar illuminance in lux at the corresponding time.

The duration of the eclipse was 2T = 9406s includ-
ing ttot = 224s of totality. We assume that this is a
perfect total eclipse, i.e., a = 0. Then s is a linear
function of t given by

s = OmH(t) =| 1 −
t

T
| (Rm +Rs). (13)

The conditions on s for a total or partial eclipse imply
that when s is between 0 and Rm − Rs the totality
occurs, and when s is between Rm−Rs and Rm+Rs the
partiality occurs. Since the partiality duration tpar =
2T − ttot is 9182s, the rate of their lengths

ttot

tpar

=
Rm −Rs

2Rs

= 0.0244 (14)

Table 1.
Solar illuminance during a total eclipse in 2006, from

Möllmann & Vollmer (2006).

Time (s) Illuminance (lux) Time (s) Illuminance (lux)
30 111 800 4880 870
390 109 900 4890 1030
750 104 700 4900 1261
930 101 400 4910 1432
1110 98 100 4920 1608
1290 94 100 4930 1815
1470 89 700 4940 1973
1650 85 100 4950 2200
1830 80 000 4960 2460
2010 76 100 4970 2650
2190 70 700 4980 2850
2370 65 300 4990 3060
2550 59 200 5000 3270
2730 53 900 5010 3500
2910 47 600 5020 3700
3090 42 000 5030 3980
3270 36 900 5040 4380
3450 30 800 5050 4600
3570 26 800 5060 4840
3630 24 700 5250 7780
3810 19 200 5310 9410
3990 13 900 5370 12 350
4170 9300 5430 13 700
4290 6200 5610 19 180
4350 4600 5910 29 600
4410 3400 6090 34 700
4470 2200 6270 42 000
4530 1400 6570 52 400
4598 5 6690 56 200
4710 5 6990 63 500
4810 6 7170 70 500
4820 50 7590 82 300
4825 116 7770 87 500
4835 228 7950 92 600
4840 343 8130 96 400
4850 447 8970 112 500
4860 570 9390 113 000
4870 719

Table 2.
Optimal R

2 values of the three models for illuminance
described in the text.

Model Lmax R2

Möllmann & Vollmer (2006) 112 557 lx 0.9973
Vollmer (2009) 113 015 lx 0.9994
Our model (10) 113 147 lx 0.9996
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Fig. 6.— Comparison between our model (10) and those of Möllmann & Vollmer (2006) and Vollmer (2009).
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Fig. 7.— Enlargement of the central area of Fig. 6.

gives the ratio of the two angular radii, that is,

Rm

Rs

= 1.0488. (15)

Using all the previous information, the various mod-
els predict the illuminance with time as a multiple of
a constant Lmax, which indicates the maximum illu-
minance exhibited without any effects of eclipse. For a
quantitative comparison, it is necessary to specify Lmax

and make a prediction in an absolute scale, rather than
in a relative one. However, Lmax has not been mea-
sured and it can only be inferred observationally to
be between 112,000 and 114,000 lx, most likely about
113,000 lx. Therefore, we set Lmax as a parameter
varying between 112,000 and 114,000 lx, and make a
quantitative comparison between the various models
and the measurement.

A quantitative comparison can be made using the

coefficient of determination, often referred to as the R2

value. Coefficient of determination, defined as

R2 = 1 −

n
∑

i=1

(yi − y′i)
2

n
∑

i=1

(yi − ȳ)2
(16)

indicates how closely a series of data y′i’s mimic an
actual series of data yi’s. In (16), ȳ indicates the mean
of the yi’s. The closer the coefficient is to unity, the
better the two datasets are in agreement (see Devore
& Berk 2011).

For Lmax varying by 50 lx ranging from 112,000 to
114,000 lx, our model (10) and the other two consid-
ered here (Möllmann & Vollmer 2006; Vollmer 2009)
each predicts a series of values for the illuminance, to
be compared with the measured ones shown in Table
1. The coefficients of determination for these three se-
ries of data are drawn in Fig. 5. with Lmax. It shows
that for all practical values of the parameter Lmax, the
model (10) fits the measurement better than the ex-
isting models from Möllmann & Vollmer (2006) where
the limb darkening was neglected, and Vollmer (2009)
where the limb darkening was considered discretely, al-
though all the three models exhibit a decent level of
resemblance.

In Table 2, the Lmax values that give the highest
R2 value, and the corresponding R2 values for each
model are presented. For the case of Lmax =113,100
lx, predictions of the models and the measurement are
plotted in Fig. 6 and 7. magnifies the central part, i.e.,
3900s ≤ t ≤ 5506s of Fig. 6.
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5. CONCLUSION

Considering the continuous effects of limb darkening,
we constructed a model for the variation of illuminance
during a solar eclipse. The accuracy of the model is im-
proved when compared with preceded models in which
the effects of limb darkening is either neglected or only
considered discretely. The improvement is especially
distinguishable in vicinity of t = 4591s and t = 4815s
where the switch between total and partial eclipse oc-
curs. The coefficient of determination which indicates
the similarity between the model prediction and the
actual measurement equals 0.9996, implying that the
model describes the phenomenon very accurately.

In this study, we assumed monochromatic light of
wavelength 5500Å for the limb darkening. The appli-
cation of an actual wavelength distribution for the so-
lar illuminance may improve the accuracy of the model
further.
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