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ABSTRACT

We perform kinetic simulations of diffusive shock acceleration (DSA) in Type Ia supernova remnants
(SNRs) expanding into a uniform interstellar medium (ISM). Bohm-like diffusion due to self-excited
Alfvén waves is assumed, and simple models for Alfvénic drift and dissipation are adopted. Phe-
nomenological models for thermal leakage injection are considered as well. We find that the preshock
gas temperature is the primary parameter that governs the cosmic ray (CR) acceleration efficiency and
energy spectrum, while the CR injection rate is a secondary parameter. For SNRs in the warm ISM of
To < 10°K, if the injection fraction is € 2 1074, the DSA is efficient enough to convert more than 20%
of the SN explosion energy into CRs and the accelerated CR spectrum exhibits a concave curvature
flattening to E~1¢, which is characteristic of CR modified shocks. Such a flat source spectrum near
the knee energy, however, may not be reconciled with the CR spectrum observed at Earth. On the
other hand, SNRs in the hot ISM of Ty &~ 10K with a small injection fraction, £ < 1074, are inefficient
accelerators with less than 10% of the explosion energy getting converted to CRs. Also the shock struc-
ture is almost test-particle like and the ensuing CR spectrum can be steeper than E~2. With amplified
magnetic field strength of order of 30uG, Alfvén waves generated by the streaming instability may drift
upstream fast enough to make the modified test-particle power-law as steep as E~2-3, which is more
consistent with the observed CR spectrum.
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1. INTRODUCTION

It is believed that most of the Galactic cosmic rays
(CRs) are accelerated in the blast waves driven by
supernova, (SN) explosions (e.g., Blandford & Eichler
1987; Reynolds 2008, and references therein). If about
10% of Galactic SN luminosity, Lgn = 10*%erg s~!, is
transfered to the CR component, the diffusive shock
acceleration (DSA) at supernova remnants (SNRs) can
provide the CR luminosity, Log &~ 104 erg s—! that es-
capes from the Galaxy. Several time-dependent, kinetic
simulations of the CR acceleration at SNRs have shown
that an order of 10% of the SN explosion energy can be
converted to CRs, when a fraction ~ 10~* of incoming
thermal particles are injected into the CR population
at the subshock (e.g., Berezhko & Volk 1997; Berezhko
et al. 2003; Kang 2006).

X-ray observations of young SNRs such as SN1006
and RCW86 indicate the presence of 10-100 TeV elec-
trons emitting nonthermal synchrotron emission imme-
diately inside the outer SNR shock (Koyama et al. 1995;
Bamba et al. 2006; Helder et al. 2009). They provide
clear evidence for the efficient acceleration of the CR
electrons at SNR shocks. Moreover, HESS gamma-
ray telescope detected TeV emission from several SNRs
such as RXJ1713.7-3946, Cas A, Vela Junior, and
RCW86, which may indicate possible detection of 7°
~- rays produced by nuclear collisions of hadronic CRs

with the surrounding gas (Aharonian et al. 2004, 2009;
Berezhko & Vélk 2006; Berezhko et al. 2009; Morlino
et al. 2009; Abdo et al. 2010). It is still challenging to
discern whether such emission could provide direct evi-
dence for the acceleration of hadronic CRs, since ~y-ray
emission could be produced by inverse Compton scat-
tering of the background radiation by X-ray emitting
relativistic electrons. More recently, however, Fermi
LAT has observed in GeV range several SNRs inter-
acting with molecular clouds, providing some very con-
vincing evidence of 7° decay y-rays (Abdo et al. 2009,
2010).

In DSA theory, a small fraction of incoming ther-
mal particles can be injected into the CR population,
and accelerated to very high energies through their in-
teractions with resonantly scattering Alfvén waves in
the converging flows across the SN shock (e.g., Drury
et al. 2001). Hence the strength of the turbulent mag-
netic field is one of the most important ingredients,
which govern the acceleration rate and in turn the max-
imum energy of the accelerated particles. If the mag-
netic field strength upstream of SNRs is similar to the
mean interstellar medium (ISM) field of Bigy ~ 5uG,
the maximum energy of CR ions of charge Z is esti-
mated to be Epna ~ 10'*Z eV (Lagage & Cesarsky
1983). However, high-resolution X-ray observations of
several young SNRs exhibit very thin rims, indicating
the presence of magnetic fields as strong as a few 100uG
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downstream of the shock (e.g., Bamba et al. 2003; Pari-
zot et al. 2006). Moreover, theoretical studies have
shown that efficient magnetic field amplification via
resonant and non-resonant wave-particle interactions
is an integral part of DSA (Lucek & Bell 2000; Bell
2004). If there exist such amplified magnetic fields in
the upstream region of SNRs, CR ions might gain en-
ergies up to Fpax ~ 1057 eV, which may explain
the all-particle CR spectrum up to the second knee
at ~ 10'7 eV with rigidity-dependent energy cutoffs.
A self-consistent treatment of the magnetic field am-
plification has been implemented in several previous
studies of nonlinear DSA (e.g., Amato & Blasi 2006;
Vladimirov et al. 2008).

In Kang (2006) (Paper I, hereafter), we calculated
the CR acceleration at typical remnants from Type
Ta supernovae expanding into a uniform interstellar
medium (ISM). With the upstream magnetic fields of
By = 30pG amplified by the CR streaming instabil-
ity, it was shown that the particle energy can reach
up to 10'®Z eV at young SNRs of several thousand
years old, which is much higher than what Lagage &
Cesarsky predicted. But the CR injection and accel-
eration efficiencies are reduced somewhat due to faster
Alfvén wave speed. With the particle injection frac-
tion ~ 107* — 1073, the DSA at SNRs is very effi-
cient, so that up to 40-50% of the explosion energy can
be transferred to the CR component. We also found
that, for the SNRs in the warm ISM (T, = 10%K),
the accelerated CR energy spectrum should exhibit a
concave curvature with the power-law slope, a (where
N(E) «x E~%) flattening from 2 to 1.6 at E > 0.1
TeV. In fact, the concavity in the CR energy spec-
trum is characteristic of strong (M > 10) CR modi-
fied shocks when the injection fraction is greater than
10~%. (e.g., Malkov & Drury 2001; Berezhko & Volk
1997; Blasi et al. 2005)

Recently, Ave et al. (2009) have analyzed the spec-
trum of CR nuclei up to ~ 10 eV measured by
TRACER instrument and found that the CR spec-
tra at Earth can be fitted by a single power law of
J(E) o« E=27, Assuming an energy-dependent prop-
agation path length (A oc E70:), they suggested that
a soft source spectrum, N(E) with a ~ 2.3 —2.4 is pre-
ferred by the observed data. However, the DSA pre-
dicts that a = 2.0 for strong shocks in the test-particle
limit and even smaller values for CR modified shocks
in the efficient acceleration regime as shown in Paper
I. Thus in order to reconcile the DSA prediction with
the TRACER data the CR acceleration efficiency at
typical SNRs should be minimal and perhaps no more
than 10% of the explosion energy transferred to CRs
(i-e., test-particle limit). Moreover, recent Fermi-LAT
observations of Cas A, which is only 330 years old and
has just entered the Sedov phase, indicate that only
about 2% of the explosion energy has been transfered
to CR electrons and protons, and that the soft proton
spectrum with E—22 is preferred to fit the observed
gamma-ray spectrum (Abdo et al. 2010). According

to Paper I, such inefficient acceleration is possible only
for SNRs in the hot phase of the ISM and for the in-
jected particle fraction smaller than 10~*. One way
to soften the CR spectrum beyond the canonical test-
particle slope (a > 2) is to include the Alfvénic drift in
the precursor, which reduces the velocity jump across
the shock. Zirakashvili & Ptuskin (2008) showed that
the Alfvénic drift in the amplified magnetic fields both
upstream and downstream can drastically soften the
accelerated particle spectrum. We will explore this is-
sue using our numerical simulations below.

Caprioli et al. (2009) took a different approach to
reconcile the concave CR spectrum predicted by non-
linear DSA theory with the softer spectrum inferred
from observed J(E). They suggested that the CR spec-
trum at Earth is the sum of the time integrated flux of
the particles that escape from upstream during the ST
stage and the flux of particles confined in the remnant
and escaping at later times. They considered several
cases and found the injected spectrum could be softer
than the concave instantaneous spectrum at the shock.
The main uncertainties in their calculations are related
with specific recipes for the particle escape. It is not
well understood at the present time how the particles
escape through a free escape boundary (Zesc) located
at a certain distance upstream of the shock or through
a maximum momentum boundary due to lack of (self-
generated) resonant scatterings above an escape mo-
mentum. The escape or release of CRs accelerated in
SNRs to the ISM remains largely unknown and needs
to be investigated further.

One of the key aspects of the DSA model is the
injection process through which suprathermal parti-
cles in the Maxwellian tail get accelerated and injected
into the Fermi process. However, the CR injection
and consequently the acceleration efficiency still re-
main uncertain, because complex interplay among CRs,
waves, and the underlying gas flow (i.e., self-excitation
of waves, resonant scatterings of particles by waves,
and non-linear feedback to the gas flow) is all model-
dependent and not understood completely.

In this paper, we adopted two different injection
recipes based on thermal leakage process, which were
considered previously by us and others. Then we have
explored the CR acceleration at SNR shocks in the dif-
ferent temperature phases (i.e., different shock Mach
numbers) and with different injection rates. Details of
the numerical simulations and model parameters are
described in section 2. The simulation results are pre-
sented and discussed in section 3, followed by a sum-
mary in section 4.

2. NUMERICAL METHOD
2.1 Spherical CRASH code

Here we consider the CR acceleration at a quasi-
parallel shock where the magnetic field lines are paral-
lel to the shock normal. So we solve the standard gas-
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dynamic equations with CR pressure terms added in
the Eulerian formulation for one dimensional spherical
symmetric geometry. The basic gasdynamic equations
and details of the spherical CRASH (Cosmic-Ray Amr
SHock) code can be found in Paper I and Kang & Jones
(2006).

In the kinetic equation approach to numerical study
of DSA, the following diffusion-convection equation for
the particle momentum distribution, f(p), is solved
along with suitably modified gasdynamic equations
(e.g., Kang & Jones 2006):

2 o9_ 10 o
ot +(u+uw)6r T 3r20r [ (- uw)] <8y g

n 1
r2 Or
where g = p*f, with f(p,r,t) the pitch angle aver-
aged CR distribution, and y = In(p), and k(r,y) is the
diffusion coefficient parallel to the field lines (Skilling
1975). So the proton number density is given by
ncryp = 4m [ f(p)p*dp. For simplicity we express the
particle momentum, p in units of myc and consider only
the proton component.

The velocity u,, represents the effective relative mo-
tion of scattering centers with respect to the bulk flow
velocity, u. The mean wave speed is set to the Alfvén
speed, i.e., uy = vqa = B/y/4mp in the upstream re-
gion. This term reflects the fact that the scattering
by Alfvén waves tends to isotropize the CR distribu-
tion in the wave frame rather than the gas frame. In
the postshock region, u,, = 0 is assumed, since the
Alfvénic turbulence in that region is probably relatively
balanced. This reduces the velocity difference between
upstream and downstream scattering centers compared
to the bulk flow, leading to less efficient DSA. This in
turn affects the CR spectrum, and so the ‘modified’
test-particle slope can be estimated as

3(up —va)
=0 A 2
dip U — VA — Uy (2)

where f(p) oc p~%» is assumed (e.g., Kang et al. 2009).
Hereafter we use the subscripts ‘0°, ‘1’, and ‘2’ to de-
note conditions far upstream of the shock, immedi-
ately upstream of the gas subshock and immediately
downstream of the subshock, respectively. Thus the
drift of Alfvén waves in the upstream region tends to
soften the CR spectrum from the canonical test-particle
spectrum of f(p) oc p~* if the Alfvén Mach number
(M4 = us/va) is small. We note o = ¢ — 2 for rela-
tivistic energies. For example, for a strong shock with
u2 = ug/4 in the test particle limit, we can obtain the
observed value of a = 2.3 if v4 = 0.173uy.

Gas heating due to Alfvén wave dissipation in the
upstream region is represented by the term

0P,
W(r,t) = —wgva ar 3)

> e o

where P. = (4mmpc®/3) [ g(p)dp/\/p? + 1 is the CR
pressure. This term is derived from a simple model
in which Alfvén waves are amplified by streaming CRs
and dissipated locally as heat in the precursor region
(e.g., Jones 1993). As was previously shown in SNR
simulations (e.g., Berezhko & Volk 1997; Kang & Jones
2006), precursor heating by wave dissipation reduces
the subshock Mach number thereby reducing DSA ef-
ficiency. The parameter wg is introduced to control
the degree of wave dissipation. We set wg = 1 for all
models unless stated otherwise.

Accurate solutions to the CR diffusion-convection
equation require a computational grid spacing signifi-
cantly smaller than the particle diffusion length, Az <«
zq(p) = k(p)/us. With Bohm-like diffusion coefficient,
k(p) x p, a wide range of length scales must be re-
solved in order to follow the CR acceleration from the
injection energy (typically pinj ~ 10~2) to highly rela-
tivistic energy (p > 1). This constitutes an extremely
challenging numerical task, requiring rather extensive
computational resources. In order to overcome this dif-
ficulty, we have developed CRASH code in 1D plane-
parallel geometry (Kang et al. 2001) and in 1D spheri-
cal symmetric geometry (Kang & Jones 2006) by com-
bining Adaptive Mesh Refinement technique and sub-
grid shock tracking technique. Moreover, we solve the
fluid and diffusion-convection equations in a frame co-
moving with the outer spherical shock in order to im-
plement the shock tracking technique effectively in an
expanding spherical geometry. In the comoving grid,
the shock remains at the same location, so the compres-
sion rate is applied consistently to the CR distribution
at the subshock, resulting in much more accurate and
efficient low energy CR acceleration.

2.2 Injection Recipes for Thermal Leakage

The injection rate with which suprathermal particles
are injected into CRs at the subshock depends in gen-
eral upon the shock Mach number, field obliquity angle,
and strength of Alfvén turbulence responsible for scat-
tering. In thermal leakage injection models suprather-
mal particles well into the exponential tail of the post-
shock Maxwellian distribution leak upstream across a
quasi-parallel shock (Malkov & Vo6lk 1998; Malkov &
Drury 2001). Currently, however, these microphysics
issues are known poorly and any quantitative predic-
tions of macrophysical injection rate require extensive
understandings of complex plasma interactions. Thus
this process has been handled numerically by adopting
some phenomenological injection schemes in which the
particles above a certain injection momentum pj,;j cross
the shock and get injected to the CR population.

There exist two types of such injection models con-
sidered previously by several authors. In a simpler
form, pinj represents the momentum boundary between
thermal and CR population and so the particles are
injected at this momentum (e.g., Kang & Jones 1995;
Berezhko & Volk 1997; Blasi et al. 2005). The injection
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Table 1.
Model parameters
Model?® ng (ISM) To Ey B, To t, Uo P,
(em™3) (K) (10% ergs) (uG) (pc) (years) (10* kms™!) (10 Serg cm™2)
WA/WB 0.3 3.3x10? 1. 30 3.19 255. 1.22 1.05
MA/MB 0.03 10° 1. 30 687  549. 1.22 1.05 x 10~
HA/HB 0.003 108 1. 30 14.8 1182. 1.22 1.05 x 1072

a ‘W’, ‘M’, and ‘H’ stands for the warm, intermediate, and hot phase of the ISM, respectively, while ‘A’ and ‘B’
stands for the injection recipes A and B, respectively, described in section 3.1.

momentum is then expressed as
(4)

where Rjy; is a constant and p;, = +/2kBTom,, is the
thermal peak momentum of the Maxwellian distribu-
tion of the immediate postshock gas with temperature
Ts, and kp is the Boltzmann constant. The CR distri-
bution at pin; is then fixed by the Maxwellian distribu-
tion,

DPinj = Rinjpth;

myp
27TkBT2

) = )1'5exp<—Rﬁ.j), (5)

where 15 is the postshock proton number density. Thus
the constant parameter Ri,; controls the injection rate
in this model. Here we refer this as ‘injection recipe B’
and consider the cases of Riy; = 3.6 and 3.8.

In Kang et al. (2002), on the other hand, a smooth
“transparency function”, 7esc(ep,v) is adopted, rather
than a step-like filter function of the injection recipe
B. This function expresses the probability of supra-
thermal particles at a given velocity, v, leaking up-
stream through the postshock MHD waves. One free
parameter controls this function; eg = By/B,, which
is the inverse ratio of the amplitude of the postshock
MHD wave turbulence B to the general magnetic field
aligned with the shock normal, By (Malkov & Volk
1998). In this model, the leakage probability Tes. > 0
above p1 & mpua(l + 1.07/ep) o p, and the “effec-
tive” injection momentum is a few times p;. So the
injection momentum can be expressed as

(6)

Note that the ratio Qin; is a function of the subshock
Mach number, M, as well as the parameter e€g, while
the constant ratio Riy; is independent of M. The value
of Qin; is larger (and so the injection rate is smaller)
for weaker subshocks and for smaller eg (see Kang et
al. 2002). In an evolving CR modified shock, the sub-
shock weakens as the precursor develops due to non-
linear feedback of the CR pressure and so the injection
rate decreases in time. We refer this as ‘injection recipe
A’ and consider 0.2 < eg < 0.3 here.

Pinj = Qinj(Ms, €B)Dth-

In Paper I we only considered the gas with pro-
tons (i.e., mean molecular weight 4 = 1), but here
we assume fully ionized plasma with cosmic abundance
(n = 0.61). As a result, for given gas pressure and den-
sity, the temperature is lower and so slightly larger ep
is needed to obtain the similar level of injection as in
Paper 1. Note that eg = 0.16 — 0.2 in Paper 1.

The efficiency of the particle injection is quantified
by the fraction of particles swept through the shock
that have been injected into the CR distribution:

[ Amr2dr [ 4x f (p,r,t)p*dp
B [ AnrZngugdt ’

&(t) (7)
where ng is the proton number density far upstream
and r, is the shock radius. Recent observations of non-
thermal radiation from several SNRs indicate that the
injection fraction is about & ~ 10~* (e.g., Berezhko et
al. 2009; Morlino et al. 2009).

In our simulations, initially there is no pre-existing
CRs and so all CR particles are freshly injected at the
shock.

2.3 A Bohm-like Diffusion Model

Self-excitation of Alfvén waves by the CR streaming
instability in the upstream region is an integral part of
the DSA (Bell 1978; Lucek & Bell 2004). The particles
are resonantly scattered by those waves, diffuse across
the shock, and get injected into the Fermi first-order
process. These complex interactions are represented
by the diffusion coefficient, which is expressed in terms
of a mean scattering length, A, and the particle speed,
v, as k(z,p) = Av/3. The Bohm diffusion model is
commonly used to represent a saturated wave spectrum
(i.e., A = ry, where ry is the gyro-radius), kp(p) =
knp?/ (p* + 1)Y/2. Here k, = mc®/(3eB) = 3.13 x
10*?cm®*s~' B!, and B, is the magnetic field strength
in units of microgauss. Asin Paper I, we adopt a Bohm-
like diffusion coefficient that includes a weaker non-
relativistic momentum dependence,

— PO
K(r,p) = Kn Py

®)

Since we do not follow explicitly the amplification of
magnetic fields due to streaming CRs, we simply as-
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Fig. 1.— Time evolution of SNR model MA with ep = 0.25 (upper panels) and SNR model MB with Rj,j = 3.6 (lower
panels) at t/t, = 1, 3, 6, 10 and 15. In the right panels, heavy lines are for the CR pressure, while thin lines are for the
gas pressure. The model parameters are M¢; = 1.4Mp), E, = 10% ergs, ny = 0.03cm 3, Ty = 10°K, and By = 30uG. See

Table 1 for the normalization constants.

sume that the field strength scales with compression
and so the diffusion coefficient scales inversely with den-
sity.

3. Simulations of Sedov-Taylor Blast Waves

3.1 SNR Model Parameters

As in Paper I, we consider a Type Ia supernova ex-
plosion with the ejecta mass, M.; = 1.4M(), expand-
ing into a uniform ISM. All models have the explo-
sion energy, E, = 10°! ergs. Previous studies have
shown that the shock Mach number is the key param-
eter determining the evolution and the DSA efficiency,
although other processes such as the particle injec-
tion, the Alfvénic drift and dissipation do play certain
roles (e.g. Kang & Jones 2002, 2007). So here three
phases of the ISM are considered: the warm phase with
ng = 0.3cm~2 and Ty = 3 x 10*K, the hot phase with

ng = 0.003 cm™3
phase with ng = 0.03 cm—3
sure of the background gas is Pism ~ 10712 erg cm™
Model parameters are summarized in Table 1. For ex-
ample, ‘WA’ model stands for the warm phase and the
injection recipe A, while ‘MB’ model stands for the in-
termediate phase and the injection recipe B.

Recent X-ray observations of young SNRs indicate
a magnetic field strength much greater than the mean
ISM field of 5uG (e.g., Berezhko et al. 2003; Volk et
al. 2005). Thus, to represent this effect we take the
upstream field strength, By = 30uG. The strength of
magnetic field determines the size of diffusion coeffi-
cient, k,, and the drift speed of Alfvén waves relative
to the bulk flow. The Alfvén speed is given by vg =
va,0(p/po) /% where va = (1.8 kms™)B,/\/nx. So
in the hot phase of the ISM (HA/HB models), va,0 =
986 kms ! and va,0/us ~ 0.175 at t = t,,

and Ty = 10K, and the intermediate

and Ty = 10°K. The pres-
3
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Fig. 2.— Immediate pre-subshock density, p1, post-subshock density, p2, post-subshock CR and gas pressure in units of

the ram pressure of the unmodified Sedov-Taylor solution, poUZ2r o (t/to)

_6/5, the CR injection parameter, £, and subshock

Mach number, M, are plotted for models WA (left panels), MA (middle panels), and HA (right panels). See Table 1 for the
model parameters. The injection recipe A with eg = 0.25 is adopted. For WA and HA models, the dashed lines are for the

runs with a reduced wave heating parameter, wg = 0.5.

The physical quantities are normalized, both in the
numerical code and in the plots below, by the following

constants:
o (3M\'
o — 47Tpo ’
1/2
¢ = png /
o Eo b
Up = 'ro/to:
po = (2.34 x 10~ gem=3\n g,
P, = poug.

These values are also given in Table 1 for reference.
Note that these physical scales depend only on ng,
since M,; and E, are the same for all models.

For a SNR propagating into a uniform ISM, the high-

est momentum, pmay, i achieved at the beginning of
the Sedov-Taylor (ST hereafter) stage and the trans-
fer of explosion energy to the CR component occurs
mostly during the early ST stage (e.g., Berezhko et
al. 1997). In order to take account of the CR accel-
eration from free expansion stage through ST stage,
we begin the calculations with the ST similarity solu-
tion at t/t, = 0.5 and terminated them at t/t, = 15.
See Paper I for further discussion on this issue.

4. RESULTS

4.1 Remnant Evolution

Fig. 1 shows the evolution of SNRs in the intermedi-
ate temperature phase with eg = 0.23 (injection recipe
A) and with Rin; = 3.6 (injection recipe B). The spa-
tial profile and the evolution of SNRs are quite similar
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Fig. 3.— The same as Fig. 2 except that eg = 0.2 (solid lines) or 0.3 (dashed lines) is adopted.

in the two models, implying that detail difference be-
tween the two injection recipes is not crucial. This is
because the subshock Mach number reduces to M ~ 4
at the early stage and remains the same until the end of
simulations in the both models, resulting in similar evo-
lutionary behavior of £ (see Fig. 2). In these efficient
acceleration models, by the early ST stage, t/t, ~ 1,
the forward shock has already become dominated by
the CR pressure and the total density compression ra-
tio becomes pa/po & 6 in both models. Spatial distri-
bution of the CR pressure widens and becomes broader
than that of the gas pressure at the later stage.

The precursor length scale is given by the diffusion
length of the highest momentum particles, lqmax =
0.1 [ u,(t)dt, independent of the diffusion coefficient &,
(Kang et al. 2009). In the test-particle limit, the shock
would follow the ST similarity solution given by

Ust/uo = 0.4&,(t/t,) %5, 9)

where £ = 1.15167 is the similarity parameter (Spritzer
1978). Then lqmax/To = 0.1&(t/t,)%*. Since the

shock radius of the ST solution is rgT /7, = &(t/t,)%4,
the relative width of the precursor is estimated to be
la,max/7s = 0.1, independent of k,. In Fig. 1 one can
see narrow precursors in the density and CR pressure
distribution, consistent with this estimate.

The shock Mach number is the primary parameter
that determines the CR acceleration efficiency, while
the injection parameters ep and Rjnj are the secondary
parameters. So the temperature (i.e., sound speed) of
the background ISM is important. The Mach numbers
of the initial shock are M, ; ~ 310, 180, and 60 in the
warm, intermediate, hot ISM models, respectively. For
the warm (WA /WB) and intermediate (MA /MB) mod-
els, the CR acceleration is efficient with the postshock
CR pressure, 0.2 < P.»>/(poU2r) < 0.4, and the shock
is significantly modified. We will refer these models as
‘efficient acceleration models’. For HA/HB models, the
CR acceleration is inefficient with P, »/(poU%7) < 0.1
and the shock is almost test-particle like. So the hot
ISM models are ‘inefficient acceleration models’. Re-
garding the injected particle fractions, the models with
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Fig. 4.— The same as Fig. 2 except that the injection recipe B with Rinj = 3.6 or Rin; = 3.8 is adopted.

e 2 0.23 or Rinj = 3.6 — 3.8 have the injection frac-
tion, & > 10~* and represent ‘efficient injection mod-
els.’” The models with eg = 0.2 have £ ~ 10742 and
are ‘inefficient injection models.’

Figs. 2-4 show the evolution of shock properties such
as the compression factors, postshock pressures, the in-
jection fraction, and subshock Mach number for vari-
ous models. In Fig. 2, the models with eg = 0.25 are
shown for wg = 0.5 (dashed lines) and wg = 1.0 (solid
lines). We can see that the more efficient wave dissipa-
tion (i.e., larger wy) reduces the CR acceleration and
the flow compression. Here WA and MA models are
characterized by both efficient injection and efficient
acceleration, while HA models show an efficient injec-
tion but inefficient acceleration. Most of shock proper-
ties seem to approach to more or less time-asymptotic
values before t/t, = 1. As the precursor grows, the
subshock weakens to 3 < M, < 5 in these models. The
injected CR particle fraction is about £ ~ 1073. The
postshock CR pressure is about P.»/(poUZr) ~ 04,
0.25, and 0.1 for WA, MA, and HA models, respec-

tively. The compression factor in the precursor varies
a little among different models, typically p;/po =~ 2—3.
The total density compression is p2/po ~ 7 — 8 for WA
models, 5.5 for MB model, 4.5 for HA models, indicat-
ing the CR modified shock structure.

Comparison of Figs. 2 and 3 tells us how the
CR acceleration depends on the injection parameter
ep and consequently on £. The injection fraction is
£ ~ 1072 for eg = 0.2 (inefficient injection mod-
els), £ ~ 1073 — 1073 for 0.23 < ep < 0.25, and
£~ 10725 -1072 for eg = 0.3. In the inefficient injec-
tion models, the subshock Mach number and postshock
properties change rather gradually throughout the Se-
dov stage and the shock is almost test-particle like with
p1/po = 1. On the other hand, for eg = 0.3 the injec-
tion fraction seems much higher than what is inferred
from recent observations of nonthermal emission from
young SNRs (e.g., Morlino et al. 2009). The postshock
CR pressure, P.»/(poUZr), is roughly independent of
the injection fraction as long as £ 2 1073 (ep 2 0.23).
But, for inefficient injection models with eg = 0.2, this
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Fig. 5.— The CR distribution at the shock, g(rs, p), and its slope, ¢(p
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—d(Ing(rs,p))/dInp + 4, the volume integrated

) =
CR number, G(p) = fg(r,p)47rr2dr, and its slope, Q(p) = —d(InG(p))/dInp + 4, are shown at t/t, = 1, 3, 6, 10, and 15
for models WA (left panels), MA (middle panels), and HA (right panels). The injection recipe A with eg = 0.25 is adopted.

ratio is reduced significantly.

We can see that the models with eg = 0.25 (Fig. 2)
and the models with Ri,; = 3.6 (Fig. 4) have similar
results. This confirms that the shock Mach number is
the primary factor that controls the CR acceleration.
For the injection recipe B, the injection rate does not
depend on the subshock Mach number, so the evolu-
tion of £ is similar among WB, MB, and HB models.
The models with Rj,; = 3.8 have about 3 times smaller
injection fraction and evolve more slowly, compared to
those with Rj,; = 3.6. But both models seems to ap-
proach to the similar states at t/¢, > 10.

4.2 Cosmic Ray Spectrum

The rate of momentum gain for a particle under go-
ing DSA is given by

d ug — Uz [ W u
ap _ Yo 220,22 p
dt 3 Ko K2

(10)

Assuming that the shock approximately follows the ST
solution and that the compression ratio is about four,
the maximum momentum of protons accelerated from
t; to t, can be calculated as

£\ 02 £\ 02
l(t) (t) -
For our simulations started from t;/t, = 0.5, this
asymptotes t0 pmax & 0.61(u3t0/nn5) ~ 10%° at large t,
which corresponds to Emay &~ 1013 eV,

Figs. 5-7 show the CR distribution function at the
shock, g(rs, p), and its slope ¢(p) = —d(In g(rs, p))/dInp+
4, and the volume integrated CR spectrum, G(p) =
[ 4mg(r, p)r*dr and its slope Q(q) = —d(In G(p))/dIn p+
4. The thermal population is included in the plot of
g(rs,p) in order to demonstrate how it is smoothly
connected with the CR component through thermal
leakage. For the volume integrated spectrum, only the

0.53ut,
Kn

Pmax =
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Fig. 6.—

CR component is shown. We note that in our sim-
ulations the particles escape from the simulation box
only by diffusing upstream and no escape condition is
enforced. Thus G(p) represents the spectrum of the
particles confined by the shock, including the particles
in the upstream region. From the spectra in Figs. 5-7,
we can see that pmax approaches up to ~ 1015 — 1015-5
eV/c at t/t, = 15 for all models, which is consistent
with the estimate given in Eq. (11).

In Fig. 5, the CR spectra at the shock in the models
with eg = 0.25 (high injection rate with £ ~ 1073) ex-
hibit the canonical nonlinear concave curvature. This
is a consequence of the following two effects: the large
compression factor across the shock structure and the
decreasing injection rate due to the slowing of the shock
speed. With the CR modified flow structure, the slope
near pmax becomes harder with ¢ = 3soy/(soy — 1),
where s = 1 — va/u, is the modification factor due
to the Alfvénic drift and o = pa/pe > 4 is the total
shock compression ratio. If the subshock Mach num-
ber reduces to M, ~ 3 — 5, the test-particle slope at

-2 0 2 4 6 8
log(p/m,c)
The same as Fig. 5 except that eg = 0.2 is adopted. The injection and acceleration efficiencies are low.

-2 0 2 4 6 8
log(p/m,c)

low momenta becomes g; = 3s05/(sos — 1) & 4.2 —4.5,
where o, = pa/p1 is the compression ratio across the
subshock. The particle flux through the shock, pous,
decreases, because the SNR, shock slows down in time.
At the same time the injection rate decreases because
the injection process is less efficient at weaker shocks.
The combined effects result in the reduction of the am-
plitude of f(rs,p) near pi,;. Consequently, the CR
spectrum at lower momentum steepens and decreases
in time. Fig. 5 demonstrates that the modified flow
structure along with slowing down of the shock speed
accentuates the concavity of the CR spectrum in much
higher degrees than what is normally observed in plane-
parallel shocks.

However, the volume integrated spectrum G(p) is
more relevant for unresolved observations of SNRs or
for the total CR spectrum produced by SNRs. The
concavity of G(p) is much less pronounced than that
of g(rs,p), and its slope Q(p) varies 4.2 — 4.4 at low
momentum and 3.5 — 4.0 at high momentum among
different models. We see that G(p) stays almost con-
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Fig. 7.— The same as Fig. 5 except that the injection recipe B with Riy; = 3.8 is adopted.

stant for t/t, 2 6, especially for 10'" < E < 10"%eV,
while extending in the momentum space with decreas-
ing pmin and increasing ppax- This can be understood
as follows. From Figs. 2-4, P, 5/(poU3y) ~constant for
t/t, > 1 (except in the inefficient injection model with
e = 0.2), so the CR pressure evolves like P, 5 oc t~6/5
(see also Fig. 1). The total CR energy associated
with the remnant is roughly Ecr o« P.R3 ~ constant.
Since Ecr « [ G(p)dp approximately, so G(p) should
approach to an asymptotic form for ¢/¢, > 1. In other
words, the distribution function g(r/rs,p) decreases as
t=%/5 in terms of the normalized coordinate, r/r,, but
the volume occupied by the remnant increases as %/5,
resulting in more or less constant G(p). Using this and
the fact that pmax asymptotes to 0.6(u2t,/kn) at large
t, we can predict that the form of G(p) would remain
about the same at much later time.

As discussed in the Introduction, the CR spectrum
observed at Earth is J(E) oc E~2:57 for 10° < E < 10'*
eV. This implies that the source spectrum should be
roughly N(E) «« E~® with a = 2.3 — 2.4, if we as-

sume an energy-dependent path length, A(R) o« R~0-¢
(where R = pc/Ze is the rigidity) (Ave et al. 2009).
If in fact the CR source spectrum at SNRs, G(p), is
assumed to be released into the ISM at the end of ST
stage, N(E)dE o G(p)p?dp is too flat to be consistent
with the observation. Thus from the spectra G(p) in
Fig. 5 we can infer that SNRs expanding into warm or
intermediate phases of the ISM cannot be the dominant
sources of Galactic CRs.

Even with the hot ISM models, the canonical test-
particle spectrum, N(E) oc E~2 might be still too flat.
If we consider the effects of Alfvén wave drift, however,
the modified test-particle slope will be given by Eq.
(2) for strong plane-parallel shocks. One can estimate
that v4 ~ 1000kms~! for ng = 0.003cm 3 and By =
30uG, which leads to a = 2.3. We show in Fig. 6 the
CR spectra for ineflicient injection models with ep =
0.2. The spectra are less flat, compared with those of
efficient injection models shown in Fig. 5. Especially,
the HA model with eg = 0.2 has the slope, a = 2.1-2.3
for 101 < E < 10'® eV. This could be more compatible
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Fig. 8.— Integrated thermal, kinetic and CR energies inside the simulation volume as a function of time for different

models. The injection parameter is from top to bottom, ep = 0.2, ep = 0.25, Rinj = 3.8, and Rin; = 3.6. See Table 1 for

model parameters.

with observed J(E) at Earth.

Fig. 7 shows the spectra for the models with injec-
tion recipe B (Rin; = 3.8). Again G(p) of HB model
shows the slope, a = 2.1 —2.3, for 10'! < E < 10! eV.
In fact these spectra are quite similar to those for HA
model shown in Fig. 6.

4.3 Energy Conversion Factor

Finally, Fig. 8 shows the integrated energies,
E;/E, = 47rf e;r2dr, where e, €pin, and ecr are the
densities of thermal, kinetic and cosmic ray energy, re-
spectively. The kinetic energy reduces only slightly and
is similar for all models. The total CR energy acceler-
ated by t/t, = 15 is Ecr/E, = 0.35, 0.20, and 0.05 for
WA, MA, and HA models, respectively, for eg = 0.2.
In the efficient injection models with eg = 0.25 or
Rin; = 3.6, the evolution of SNRs is quite similar, and
the CR energy fraction approaches to Ecr/E, = 0.56,
0.43, and 0.25 for WA/WB, MA/MB, and HA/HB

models, respectively. So in terms of the energy transfer
fraction, the CR acceleration in the warm ISM models
seems to be too efficient. But one has to recall that the
CR injection rate may depend on the mean magnetic
field direction relative to the shock surface. In a more
realistic magnetic field geometry, where a uniform ISM
field is swept by the spherical shock, only 10-20% of the
shock surface has a quasi-parallel field geometry (Volk
et al. 2003). If the injection rate were to be reduced sig-
nificantly at perpendicular shocks, one may argue that
the CR energy conversion factor averaged over the en-
tire shock surface could be several times smaller than
the factors shown in Fig. 8.

On the other hand, Giacalone (2005) showed that
the protons can be injected efficiently even at perpen-
dicular shocks in fully turbulent fields due to field line
meandering. In such case the injection rate at perpen-
dicular shocks may not be much smaller than that at
parallel shocks and the CR energy conversion may be
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similar. Then SNRs in the warm phase of the ISM seem
to generate too much CR energy. In order to meet the
requirement of 10% energy conversion and at the same
time to reconcile with the CR spectrum observed at
Earth, SNRs expanding into the hot phase of the ISM
should be the dominant accelerators of Galactic CRs
below 10%%eV.

5. SUMMARY

The evolution of cosmic ray modified shocks depends
on complex interactions between the particles, waves
in the magnetic field, and underlying plasma flow. We
have developed numerical tools that can emulate some
of those interactions and incorporated them into a ki-
netic numerical scheme for DSA, CRASH code (Kang
et al. 2002; Kang & Jones 2006). Specifically, we as-
sume that a Bohm-like diffusion arises due to reso-
nant scattering by Alfvén waves self-excited by the CR
streaming instability, and adopt simple models for the
drift and dissipation of Alfvén waves in the precursor
(Jones 1993; Kang & Jones 2006).

In the present paper, using the spherical CRASH
code, we have calculated the CR spectrum accelerated
at SNRs from Type Ia supernova expanding into a uni-
form interstellar medium. We considered different tem-
perature phases of the ISM, since the shock Mach num-
ber is the primary parameter that determines the ac-
celeration efficiency of DSA. One of the secondary pa-
rameters is the fraction of particles injected into the
CR population, &, at the gas subshock. Since detailed
physical processes that governs the injection are not
known well, we considered two injection recipes that
are often adopted by previous authors.

The main difference between the two recipes is
whether the ratio of injection momentum to thermal
peak momentum, i.e., Pinj/Pen, is constant or depends
on the subshock Mach number. It turns out the CR
acceleration and the evolution of SNRs are insensitive
to such difference as long as the injection fraction is
similar. For example, the models with injection recipe
A with eg = 0.23 and the models with injection recipe
B with Riy; = 3.6 show almost the same results with
similar injection fractions, £ ~ 1073 — 1073,

In general the DSA is very efficient for strong SNR
shocks, if the injection fraction, £ 2 1075, The CR
spectrum at the subshock shows a strong concavity,
not only because the shock structure is modified non-
linearly by the dominant CR pressure, but also be-
cause the SNR shock slows down in time during the
ST stage. Thus the concavity of the CR spectrum in
SNRs is more pronounced than that in plane-parallel
shocks. However, the volume integrated spectrum,
G(p), (i-e., the spectrum of CRs confined by the shock
including the particles in the upstream region) is much
less concave, which is consistent with previous stud-
ies (e.g., Berezhko & Volk 1997). We have shown
also that G(p) approaches roughly to time-asymptotic

states, since the CR pressure decreases as t~%/5 while

the volume increases as Ry oc t5/%. This in turn makes
the total CR energy converted (Ecgr) asymptotes to a
constant value. If we assume that CRs are released at
the break-up of SNRs, then the source spectrum can be
modeled as N (E)dE = G(p)p*dp. However, it is a com-
plex unknown problem how to relate G(p) to the source
spectrum N (E) and further to the observed spectrum
J(E).

In the warm ISM models (Tp = 3 x 10*K, ng =
0.3cm™?), the CR acceleration at SNRs may be too ef-
ficient. More than 40% of the explosion energy (E,)
is tranferred to CRs and the source CR spectrum,
N(E) x E~* with a = 1.5, is too flat to be consis-
tent with the observed CR spectrum at Earth (Ave et
al. 2009). In these models with efficient injection and
acceleration, the flow structure is significantly modified
with pa/po & 7.2 — 7.5 for WA/WB models.

In the intermediate temperature ISM models (Ty =
105K, ng = 0.03cm—3), the flow structure is still signif-
icantly modified with py/po & 5.7—6.0 and the fraction
of energy conversion, Ecr/FEy = 0.2 — 0.4 for MA/MB
models.

Only in the hot ISM model (Ty = 10°K, ng =
0.003cm~?) with inefficient injection (eg = 0.2 or
Riy; > 3.8), the shock structure is almost test-particle
like with pa/pg =~ 4.2 — 4.4 and the fraction of en-
ergy conversion, Ecgr /Eq ~ 0.1 — 0.2 for HA/HB mod-
els. The predicted source spectrum G(p) has a slope
q = 4.1 — 4.3 for 10! < E < 10' eV. Here drift of
Alfvén waves relative to the bulk flow upstream of the
subshock plays an important role, since the modified
test-particle slope, gp = 3(uo — va)/(ug — va — u2),
can be steeper than the canonical value of ¢ = 4 for
strong unmodified shocks. With magnetic fields of
By = 30uG, the Alfvén speed is v4 =~ 1000kms—!, and
so the modified test-particle slope is a@ = 2.3. This
may imply that SN exploding into the hot ISM are
the dominant sources of Galactic CRs below 10'°eV.
One might ask if the magnetic field amplification would
take place in the case of such inefficient acceleration,
since the magnetic field energy density is expected to
be proportional to the CR pressure. An alternative
way to enhance the downstream magnetic field was sug-
gested by Giacalone & Jokipii (2007). They showed
that the density fluctuations pre-existing upstream can
warp the shock front and vortices are generated behind
the curved shock surface. Then vortices are cascade
into turbulence which amplifies magnetic fields via tur-
bulence dynamo.

Finally, in all models considered in this study, for
Bohm-like diffusion with the amplified magnetic field in
the precursor, indicated by X-ray observations of young
SNRs, the particles could be accelerated to Emax =
10'55ZeV. The drift and dissipation of faster Alfvén
waves in the precursor, on the other hand, soften the
CR spectrum and reduce the CR acceleration efficiency.
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